Respuesta :

Answer:

Volume of the given pyramid = 1122.37 cubic feet

Step-by-step explanation:

Volume of the regular hexagonal pyramid = [tex]\frac{1}{3}(\text{Area of the base})(\text{Base})[/tex]

Measure of internal angle of a polygon = [tex]\frac{(n-2)\times 180}{n}[/tex]

Here, n = number of sides of the polygon

For a hexagon, n = 6

Measure of interior ∠C = [tex]\frac{(6-2)\times 180}{6}[/tex]

                                       = 120°

Measure of ∠BCD = [tex]\frac{120}{2}[/tex]

                              = 60°

By applying tangent rule in ΔCED,

tan(∠ECD) = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]

tan(60°) = [tex]\frac{DE}{CE}[/tex]

[tex]\sqrt{3}=\frac{DE}{6}[/tex]

DE = [tex]6\sqrt{3}[/tex] feet

And cos(60°) = [tex]\frac{EC}{CD}[/tex]

[tex]\frac{1}{2}=\frac{6}{CD}[/tex]

CD = 12 feet

Area of ΔBCD = [tex]\frac{1}{2}(\text{Base})(\text{Height})[/tex]

                        =  [tex]\frac{1}{2}(6\sqrt{3})(12)[/tex]

                        = [tex]36\sqrt{3}[/tex] feet

Area of hexagonal Base of the pyramid = [tex]6(36\sqrt{3})[/tex]

                                                                  = 216√3 square feet

Since, lateral height of the pyramid (AC) = 15 feet

By applying Pythagoras theorem in ΔADC,

AC² = AD² + CD²

(15)² = AD² + (12)²

AD = [tex]\sqrt{225-144}[/tex]

AD = 9 feet

Volume of the given pyramid = [tex]\frac{1}{3}(216\sqrt{3})(9)[/tex]

                                                 = 648√3 cubic feet

                                                 = 1122.37 cubic feet

Ver imagen eudora
ACCESS MORE