Function f approximately represents the trajectory of an airplane in an air show, where x is the horizontal distance of the flight, in kilometers. What is the symmetry of the function?

Respuesta :

Answer:

[tex](\frac{3}{2},102)[/tex]

Step-by-step explanation:

Given

[tex]f(x)=88x^2-264x+300[/tex] --- Missing from the question

Required

The symmetry

First, we express f(x) as: [tex]f(x) = a(x - h)^2 + k[/tex]

Where the symmetry is: (h, y) and x = h

Equate f(x) to 0

[tex]88x^2-264x+300 = 0[/tex]

Subtract 300 from both sides

[tex]88x^2-264x+300 - 300= 0 - 300[/tex]

[tex]88x^2 - 264x= - 300[/tex]

Factorize

[tex]88(x^2 - 3x) = -300[/tex]

On the left-hand side, the coefficient of x is -3.

Divide by 2 and add the square to both sides.

So, we have:

[tex]88(x^2 - 3x) + (\frac{3}{2})^2 = -300 + (\frac{3}{2})^2[/tex]

Multiply the new terms by 88 (to make it factorizable)

[tex]88(x^2 - 3x ) +88* (\frac{3}{2})^2 = -300 + 88 * (\frac{3}{2})^2[/tex]

Factorize

[tex]88(x^2 - 3x + (\frac{3}{2})^2) = -300 + 88 * (\frac{3}{2})^2[/tex]

The quadratic expression in the bracket is a perfect square. This gives:

[tex]88(x - \frac{3}{2})^2 = -300 + 88 * (\frac{3}{2})^2[/tex]

[tex]88(x - \frac{3}{2})^2 = -300 + 88 * \frac{9}{4}[/tex]

[tex]88(x - \frac{3}{2})^2 = -300 + 22 * 9[/tex]

[tex]88(x - \frac{3}{2})^2 = -102[/tex]

Add 102 to both sides

[tex]88(x - \frac{3}{2})^2 +102= -102 + 102[/tex]

[tex]88(x - \frac{3}{2})^2 +102= 0[/tex]

Equate to y

[tex]y = 88(x - \frac{3}{2})^2 +102[/tex]

Recall that:

The symmetry is: (h, y)

By comparison with [tex]f(x) = a(x - h)^2 + k[/tex] and x = h

[tex]h = \frac{3}{2}[/tex]

So: [tex]x = \frac{3}{2}[/tex]

Substitute [tex]x = \frac{3}{2}[/tex] in [tex]y = 88(x - \frac{3}{2})^2 +102[/tex]

[tex]y = 88(\frac{3}{2} - \frac{3}{2})^2 +102[/tex]

[tex]y = 88(0)^2 +102[/tex]

[tex]y = 0 +102[/tex]

[tex]y = 102[/tex]

So, the symmetry is: [tex](\frac{3}{2},102)[/tex]

ACCESS MORE