Answer:
[tex]y=8x-781[/tex]
Here, [tex]x[/tex] represents temperature and [tex]y[/tex] denotes rate of chirping per minute.
Step-by-step explanation:
Let [tex]x[/tex] represents temperature and [tex]y[/tex] denotes rate of chirping per minute.
At [tex]106[/tex]°F, a certain insect chirps at a rate of [tex]67[/tex] times per minute.
Take [tex](x_1,y_1)=(106,67)[/tex]
At [tex]108[/tex]°F, they chirp [tex]83[/tex] times per minute.
Take [tex](x_2,y_2)=(108,83)[/tex]
Slope intercept form:
[tex]y-y_1=(\frac{y_2-y_1}{x_2-x_1})(x-x_1)[/tex]
[tex]y-67=(\frac{83-67}{108-106})(x-106)\\\\y-67=(\frac{83-67}{108-106})(x-106)\\\\y-67=(\frac{16}{2})(x-106)\\\\y-67=8(x-106)\\y-67=8x-848\\y=8x+67-848\\y=8x-781[/tex]