Find the measure of the indicated angle to the nearest degree

Answer:
6). Option A
7). Option C
8). Y = 62°
Step-by-step explanation:
6). Let the missing angle = x°
By applying cosine rule to find the missing angle,
cos(x°) = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]
= [tex]\frac{35}{37}[/tex]
x = [tex]\text{cos}^{-1}(\frac{35}{37})[/tex]
x = 18.92°
x ≈ 19°
Option A is the answer.
7). Let the missing angle = x°
By applying cosine rule in the given triangle,
cos(x°) = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]
cos(x°) = [tex]\frac{37}{38}[/tex]
x = [tex]\text{cos}^{-1}(\frac{37}{38})[/tex]
x = 13.17
x = 13°
Therefore, Option C is the answer.
8). tanY = 1.8807
Y = [tex]\text{tan}^{-1}(1.8807)[/tex]
Y = 62°