Answer:
x = ± √(-15n-7) / √2n (± (-15n-7)^(1/2) / (2n)^(1/2))
Step-by-step explanation:
Factoring?
2nx² + 15n+7 = 0
2nx² + 0*x + (15n+7) = 0 ... ax²+bx+c=0
Roots: x = (-2b ± √b²-4ac)) / 2a = (0 ± √0-4*2n*(15n+7)) / 4n
x = ± (√8n (-15n-7)) / 4n = ± (2√2n(-15n-7)) / 4n = ± (√2n(-15n-7)) / 2n
or x = ± √(-15n-7) / √2n