Answer:
[tex]c(t) =-18t +212[/tex]
Step-by-step explanation:
Given
[tex](t_1,c_1) = (4,140)[/tex]
[tex](t_2,c_2) = (9,50)[/tex]
Required
Determine the equation
First, we calculate the slope (m)
[tex]m = \frac{c_2 - c_1}{t_2 - t_1}[/tex]
[tex]m = \frac{50 - 140}{9-4}[/tex]
[tex]m = \frac{-90}{5}[/tex]
[tex]m = -18[/tex]
The equation is then calculated as:
[tex]c =m(t - t_1) + c_1[/tex]
[tex]c =-18*(t - 4) + 140[/tex]
[tex]c =-18t +72 + 140[/tex]
[tex]c =-18t +212[/tex]
Hence, the function is:
[tex]c(t) =-18t +212[/tex]