Answer:
Explanation:
[tex]\text{The curve of the plot}[/tex] [tex]\mathbf{E_A,E_R, \ and \ E_N}[/tex] [tex]\text{can be seen in the attached diagram below}[/tex]
[tex]\text{From the plot}[/tex], [tex]\mathbf{r_o = 0.2 4nm \ and \ E_o =-5.3 eV}[/tex]
[tex]\mathbf{We \ knew \ that: E_N = E_A + E_R}[/tex]
[tex]\mathtt{GIven \ E_A = \dfrac{-1.436}{r}\ \ \ , E_R = \dfrac{7.32 \times 10^{-6}}{r^n} \ \ and \ \ n=8 }[/tex]
[tex]\mathtt{Then; E_N = -\dfrac{-1.436}{r}+ \dfrac{7.32\times 10^{-6}}{r^8}}[/tex]
[tex]\mathtt{Also; r_o = \Big( \dfrac{A}{nB} \Big)^{\dfrac{1}{1-n}}} \\ \\ \mathtt{ r_o = \Big( \dfrac{1.986}{8 \times 7.32\times 10^{-6}} \Big)^{\dfrac{1}{1-8}}} \\ \\ \mathbf{r_o = 0.236 nm}[/tex]
[tex]E_o = \dfrac{-1.436}{\Big[\dfrac{1.436}{8(732\times 10^{-6})}\Big]^{\dfrac{1}{1-8}}} + \dfrac{7.32 \times 10^{-6}}{\Big[ \dfrac{1.436}{8\times7.32 \times 10^{-6} } \Big]^{\dfrac{8}{1-8}}}[/tex]
[tex]\mathbf{E_o = -5.32 \ eV}[/tex]