Answer:
B. x = -1 ± i
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Standard Form: ax² + bx + c = 0
- Factoring
- Quadratic Formula: [tex]\displaystyle x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]
Algebra II
- Imaginary Numbers: √-1 = i
Step-by-step explanation:
Step 1: Define
x² + 2x = -2
Step 2: Identify Variables
- Rewrite Quadratic in Standard Form [Addition Property of Equality]: x² + 2x + 2 = 0
- Break up Quadratic: a = 1, b = 2, c = 2
Step 3: Solve for x
- Substitute in variables [Quadratic Formula]: [tex]\displaystyle x=\frac{-2 \pm \sqrt{2^2-4(1)(2)}}{2(1)}[/tex]
- [√Radical] Evaluate exponents: [tex]\displaystyle x=\frac{-2 \pm \sqrt{4-4(1)(2)}}{2(1)}[/tex]
- Multiply: [tex]\displaystyle x=\frac{-2 \pm \sqrt{4-8}}{2}[/tex]
- [√Radical] Subtract: [tex]\displaystyle x=\frac{-2 \pm \sqrt{-4}}{2}[/tex]
- [√Radical] Factor: [tex]\displaystyle x=\frac{-2 \pm \sqrt{-1}\sqrt{4}}{2}[/tex]
- [√Radicals] Simplify: [tex]\displaystyle x=\frac{-2 \pm 2i}{2}[/tex]
- Factor: [tex]\displaystyle x=\frac{2(-1 \pm i)}{2}[/tex]
- Divide: [tex]\displaystyle x = -1 \pm i[/tex]