Respuesta :
Answer:
[tex]\displaystyle \int {\frac{1}{1+(2x)^2}} \, dx = \frac{artan(2x)}{2} + C[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Calculus
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Antiderivatives - Integrals
Indefinite Integrals
- Integral Constant C
U-Substitution
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Arctrig Integration [arctangent]: [tex]\displaystyle \int {\frac{1}{a^2 + u^2}} \, du = \frac{1}{a}arctan(\frac{u}{a}) + C[/tex]
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle \int {\frac{1}{1+(2x)^2}} \, dx[/tex]
Step 2: Integrate Pt. 1
- [Integral] Rewrite: [tex]\displaystyle \int {\frac{1}{1^2+(2x)^2}} \, dx[/tex]
Step 3: Identify Variables
Identify variables for u-substitution of arctrig.
- Set u: [tex]\displaystyle u = 2x[/tex]
- Differentiate [Basic Power Rule]: [tex]\displaystyle \frac{du}{dx} = 1 \cdot 2x^{1 - 1}[/tex]
- [Derivative] Simplify: [tex]\displaystyle \frac{du}{dx} = 2[/tex]
- [Derivative] Rewrite: [tex]\displaystyle du = 2dx[/tex]
- Set a: [tex]\displaystyle a = 1[/tex]
Step 4: Integrate Pt. 2
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \frac{1}{2}\int {\frac{2}{1^2+(2x)^2}} \, dx[/tex]
- [Integral] U-Substitution: [tex]\displaystyle \frac{1}{2}\int {\frac{du}{a +u^2}}[/tex]
- [Integral] Arctrig Integration [arctangent]: [tex]\displaystyle \frac{1}{2}[\frac{1}{a}arctan(\frac{u}{a})] + C[/tex]
- [Integral] Back-Substitute: [tex]\displaystyle \frac{1}{2}[\frac{1}{1}arctan(\frac{2x}{1})] + C[/tex]
- [Integral] Divide: [tex]\displaystyle \frac{1}{2}[arctan(2x)] + C[/tex]
- [Integral] Multiply: [tex]\displaystyle \frac{arctan(2x)}{2} + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Integration of Arctrig
Book: College Calculus 10e