Respuesta :

I think it’s 5.2 or 5.1

A parabola is a group of points inside a plane that are equidistant from the focus, as well as a straight line or directrix.

Parabola:

  • An idea would be to write its equation in the form of  [tex]y = a(x-h)^2+K[/tex]and then discover its friction coefficient using the coordinates of its vertex.
  • To find this same value of the coefficient, use the coordinates of its vertex (maximum point, or minimum point).

[tex]\to y-5=\frac{1}{16} (x-3)^2[/tex]

The formula for the parabola:

[tex]\to y = a(x-h)^2 + k[/tex]

Solving the above-given equation:

[tex]\to y=\frac{1}{16} (x-3)^2+5[/tex]

Compare the value and write the value that is:

[tex]\to[/tex]  a = [tex]\frac{1}{16}[/tex]

[tex]\to[/tex]  h = 3

[tex]\to[/tex]  k = 5

Solving the value:

[tex]\to y=\frac{1}{16} (x-3)^2+5[/tex]

[tex]\to y=\frac{1}{16} (x^2+9-6x)+5\\\\\to y=\frac{x^2}{16} +\frac{9}{16}- \frac{6x}{16}+5\\\\\to y=\frac{x^2}{16} +\frac{9}{16}- \frac{3x}{8}+5\\\\\to y=\frac{x^2}{16} - \frac{3x}{8}+5 +\frac{9}{16}\\\\\to y=\frac{x^2}{16} - \frac{3x}{8}+\frac{80+ 9}{16}\\\\\to y=\frac{x^2}{16} - \frac{3x}{8}+\frac{89}{16}\\\\ \to 16y=x^2 - 6x+89\\\\[/tex]

by solving the above expression we get (0, 5.563).

Please find the attached file.

Find out more about the parabola here:

brainly.com/question/13089306

Ver imagen codiepienagoya
ACCESS MORE