Respuesta :
A parabola is a group of points inside a plane that are equidistant from the focus, as well as a straight line or directrix.
Parabola:
- An idea would be to write its equation in the form of [tex]y = a(x-h)^2+K[/tex]and then discover its friction coefficient using the coordinates of its vertex.
- To find this same value of the coefficient, use the coordinates of its vertex (maximum point, or minimum point).
[tex]\to y-5=\frac{1}{16} (x-3)^2[/tex]
The formula for the parabola:
[tex]\to y = a(x-h)^2 + k[/tex]
Solving the above-given equation:
[tex]\to y=\frac{1}{16} (x-3)^2+5[/tex]
Compare the value and write the value that is:
[tex]\to[/tex] a = [tex]\frac{1}{16}[/tex]
[tex]\to[/tex] h = 3
[tex]\to[/tex] k = 5
Solving the value:
[tex]\to y=\frac{1}{16} (x-3)^2+5[/tex]
[tex]\to y=\frac{1}{16} (x^2+9-6x)+5\\\\\to y=\frac{x^2}{16} +\frac{9}{16}- \frac{6x}{16}+5\\\\\to y=\frac{x^2}{16} +\frac{9}{16}- \frac{3x}{8}+5\\\\\to y=\frac{x^2}{16} - \frac{3x}{8}+5 +\frac{9}{16}\\\\\to y=\frac{x^2}{16} - \frac{3x}{8}+\frac{80+ 9}{16}\\\\\to y=\frac{x^2}{16} - \frac{3x}{8}+\frac{89}{16}\\\\ \to 16y=x^2 - 6x+89\\\\[/tex]
by solving the above expression we get (0, 5.563).
Please find the attached file.
Find out more about the parabola here:
brainly.com/question/13089306
![Ver imagen codiepienagoya](https://us-static.z-dn.net/files/d05/fad0ab23c4d6159537921831ac7137c4.jpg)