Respuesta :

Answer:

[tex]\frac{125x^3 - 8}{5x - 2} = 25x^2 + 10x +4[/tex]

Step-by-step explanation:

Given

[tex]Dividend = 125x^3 - 8[/tex]

[tex]Divisor = 5x - 2[/tex]

Required

Determine the quotient

See attachment for complete process.

First, divide 125x^3 by 5x

[tex]\frac{125x^3}{5x} =25x^2[/tex]

Write [tex]25x^2[/tex] at the top

Multiply [tex]5x - 2[/tex] by [tex]25x^2[/tex]

[tex]= 125x^3 - 50x^2[/tex]

Subtract from 125x^3 - 8

i.e.

[tex]125x^3 - 8 - (125x^3 - 50x^2) = 50x^2 - 8[/tex]

Step 2:

Divide 50x^2 by 5x

[tex]\frac{50x^2}{5x} = 10x[/tex]

Write [tex]10x[/tex] at the top

Multiply [tex]5x - 2[/tex] by [tex]10x[/tex]

[tex]= 50x^2 - 20x[/tex]

Subtract from 50x^2 - 8

i.e.

[tex]50x^2 - 8 - (50x^2 - 20x) = 20x - 8[/tex]

Step 3:

Divide 20x by 5x

[tex]\frac{20x}{5x} = 4[/tex]

Write [tex]4[/tex] at the top

Multiply [tex]5x - 2[/tex] by [tex]4[/tex]

[tex]= 20x - 8[/tex]

Subtract from 20x - 8

i.e.

[tex]20x - 8 - (20x - 8) = 0[/tex]

Hence:

[tex]\frac{125x^3 - 8}{5x - 2} = 25x^2 + 10x +4[/tex]

Ver imagen MrRoyal
ACCESS MORE