Quadrilateral ABCD has vertices A (-1,8), B (2, 12), C (5,8), and D (-1,-2)
and its image has a translation (x, y) - (x + 12, y-5). What are the new
coordinates of A'B'C'D'?​

Respuesta :

Answer:

The new coordinates of A'B'C'D' are [tex]A'(x,y) =(11,3)[/tex], [tex]B'(x,y) = (14, 7)[/tex], [tex]C'(x,y) = (17, 3)[/tex] and [tex]D'(x,y) = (11, -7)[/tex], respectively.

Step-by-step explanation:

By using the translation definition, we get the coordinates of the quadrilateral A'B'C'D':

[tex]A'(x,y) = A(x,y) + T(x,y)[/tex] (1)

[tex]A'(x,y) = (-1,8) + (12,-5)[/tex]

[tex]A'(x,y) =(11,3)[/tex]

[tex]B'(x,y) = B(x,y) + T(x,y)[/tex] (2)

[tex]B'(x,y) = (2,12) + (12,-5)[/tex]

[tex]B'(x,y) = (14, 7)[/tex]

[tex]C'(x,y) = C(x,y) + T(x,y)[/tex] (3)

[tex]C'(x,y) = (5,8) + (12,-5)[/tex]

[tex]C'(x,y) = (17, 3)[/tex]

[tex]D'(x,y) = D(x,y) +T(x,y)[/tex] (4)

[tex]D'(x,y) = (-1,-2) + (12,-5)[/tex]

[tex]D'(x,y) = (11, -7)[/tex]

The new coordinates of A'B'C'D' are [tex]A'(x,y) =(11,3)[/tex], [tex]B'(x,y) = (14, 7)[/tex], [tex]C'(x,y) = (17, 3)[/tex] and [tex]D'(x,y) = (11, -7)[/tex], respectively.