Answer:
The new coordinates of A'B'C'D' are [tex]A'(x,y) =(11,3)[/tex], [tex]B'(x,y) = (14, 7)[/tex], [tex]C'(x,y) = (17, 3)[/tex] and [tex]D'(x,y) = (11, -7)[/tex], respectively.
Step-by-step explanation:
By using the translation definition, we get the coordinates of the quadrilateral A'B'C'D':
[tex]A'(x,y) = A(x,y) + T(x,y)[/tex] (1)
[tex]A'(x,y) = (-1,8) + (12,-5)[/tex]
[tex]A'(x,y) =(11,3)[/tex]
[tex]B'(x,y) = B(x,y) + T(x,y)[/tex] (2)
[tex]B'(x,y) = (2,12) + (12,-5)[/tex]
[tex]B'(x,y) = (14, 7)[/tex]
[tex]C'(x,y) = C(x,y) + T(x,y)[/tex] (3)
[tex]C'(x,y) = (5,8) + (12,-5)[/tex]
[tex]C'(x,y) = (17, 3)[/tex]
[tex]D'(x,y) = D(x,y) +T(x,y)[/tex] (4)
[tex]D'(x,y) = (-1,-2) + (12,-5)[/tex]
[tex]D'(x,y) = (11, -7)[/tex]
The new coordinates of A'B'C'D' are [tex]A'(x,y) =(11,3)[/tex], [tex]B'(x,y) = (14, 7)[/tex], [tex]C'(x,y) = (17, 3)[/tex] and [tex]D'(x,y) = (11, -7)[/tex], respectively.