Find the value of x.
6
4x + 9
I
6 + 20%
go to (-3, -7)
go to (-5, 6)
a) x = 7
b) x= 1
c) x = 12
d) x= 24
e) x = 14
go to (4,0)
go to (5,-2)
go to (7,-3)

Find the value of x 6 4x 9 I 6 20 go to 3 7 go to 5 6 a x 7 b x 1 c x 12 d x 24 e x 14 go to 40 go to 52 go to 73 class=

Respuesta :

Answer:

c) x = 12

Step-by-step explanation:

By tangent secant theorem:

[tex](4x + 9) \degree = \frac{1}{2} \{360 - (6 + 20x) \} \degree \\ \\ 2(4x + 9) \degree = \{360 - 6 - 20x) \} \degree \\ \\ (8x + 18) = 354 - 20x\\ \\ 8x + 20x= 354 - 18 \\ \\ 28x = 336 \\ \\ x = 12[/tex]

Answer:

Answer:

c) x = 12

Step-by-step explanation:

By tangent secant theorem:

\begin{gathered}(4x + 9) \degree = \frac{1}{2} \{360 - (6 + 20x) \} \degree \\ \\ 2(4x + 9) \degree = \{360 - 6 - 20x) \} \degree \\ \\ (8x + 18) = 354 - 20x\\ \\ 8x + 20x= 354 - 18 \\ \\ 28x = 336 \\ \\ x = 12\end{gathered}

(4x+9)°=

2

1

{360−(6+20x)}°

2(4x+9)°={360−6−20x)}°

(8x+18)=354−20x

8x+20x=354−18

28x=336

x=12

ACCESS MORE