Respuesta :

Answer:

[tex]\frac{1}{5}[/tex]

Step-by-step explanation:

Consider the curve [tex]y=3x^2-5x[/tex]

Differentiate with respect to [tex]x[/tex]

[tex]\frac{dy}{dx} =3(2x)-5=6x-5[/tex]

( Use [tex]\frac{d}{dx}(x^n)=nx^{n-1}[/tex] )

Slope of normal curve is given by [tex]\frac{-1}{\frac{dy}{dx} }[/tex]

Slope of normal curve = [tex]\frac{-1}{6x-5}[/tex]

To find slope of normal curve at point [tex](0,0)[/tex] ,put [tex]x=0[/tex] in [tex]\frac{-1}{6x-5}[/tex]

Slope of normal curve at point [tex](0,0)[/tex] = [tex]\frac{-1}{6(0)-5} =\frac{-1}{-5}=\frac{1}{5}[/tex]

ACCESS MORE

Otras preguntas