The slope of the normal curve y=3x^2-5x is at the point (0,0)
![The slope of the normal curve y3x25x is at the point 00 class=](https://us-static.z-dn.net/files/d06/b5906aca9da6d6c6ed4b7f1afdc70d09.png)
Answer:
[tex]\frac{1}{5}[/tex]
Step-by-step explanation:
Consider the curve [tex]y=3x^2-5x[/tex]
Differentiate with respect to [tex]x[/tex]
[tex]\frac{dy}{dx} =3(2x)-5=6x-5[/tex]
( Use [tex]\frac{d}{dx}(x^n)=nx^{n-1}[/tex] )
Slope of normal curve is given by [tex]\frac{-1}{\frac{dy}{dx} }[/tex]
Slope of normal curve = [tex]\frac{-1}{6x-5}[/tex]
To find slope of normal curve at point [tex](0,0)[/tex] ,put [tex]x=0[/tex] in [tex]\frac{-1}{6x-5}[/tex]
Slope of normal curve at point [tex](0,0)[/tex] = [tex]\frac{-1}{6(0)-5} =\frac{-1}{-5}=\frac{1}{5}[/tex]