Respuesta :

Space

Answer:

[tex]\displaystyle \int\limits^1_0 {[2f(x) - g(x)]} \, dx = 11[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Functions
  • Function Notation

Calculus

Integrals

  • Definite Integrals

Integration Property [Multiplied Constant]:                                                                 [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:                                                               [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \int\limits^1_0 {f(x)} \, dx = 4[/tex]

[tex]\displaystyle \int\limits^1_0 {g(x)} \, dx = -3[/tex]

[tex]\displaystyle \int\limits^1_0 {[2f(x) - g(x)]} \, dx[/tex]

Step 2: Find

  1. [Integral] Rewrite [Integration Property - Subtraction]:                                  [tex]\displaystyle \int\limits^1_0 {[2f(x) - g(x)]} \, dx = \int\limits^1_0 {2f(x)} \, dx - \int\limits^1_0 {g(x)} \, dx[/tex]
  2. [1st Integral] Rewrite [Integration Property - Multiplied Constant]:                [tex]\displaystyle \int\limits^1_0 {[2f(x) - g(x)]} \, dx = 2\int\limits^1_0 {f(x)} \, dx - \int\limits^1_0 {g(x)} \, dx[/tex]
  3. Substitute in integral values:                                                                           [tex]\displaystyle \int\limits^1_0 {[2f(x) - g(x)]} \, dx = 2(4) - (-3)[/tex]
  4. Multiply:                                                                                                              [tex]\displaystyle \int\limits^1_0 {[2f(x) - g(x)]} \, dx = 8 - (-3)[/tex]
  5. Subtract:                                                                                                            [tex]\displaystyle \int\limits^1_0 {[2f(x) - g(x)]} \, dx = 11[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

ACCESS MORE