Respuesta :
Answer:
[tex]zw=76 * (cos(\frac{3\pi}{16}) +isin(\frac{3\pi}{16}) )[/tex]
Step-by-step explanation:
Given
[tex]z =38 (cos(\frac{\pi}{8})+ i sin(\frac{\pi}{8})[/tex] and
[tex]w = 2 (cos(\frac{\pi}{16} ) + i sin(\frac{\pi}{16})[/tex]
Required
Determine zw
Given that:
[tex]x = v_1(cos(a) + isin(a))[/tex] and [tex]y = v_2(cos(b) + isin(b))[/tex]
[tex]x * y = (v_1 * v_2)*((cos(a+b) + isin(a+b))[/tex]
So, we have:
[tex]zw=(38 * 2) * (cos(\frac{\pi}{8} + \frac{\pi}{16}) + isin(\frac{\pi}{8} + \frac{\pi}{16}))[/tex]
[tex]zw=76 * (cos(\frac{2\pi + \pi}{16})+isin(\frac{2\pi + \pi}{16}))[/tex]
[tex]zw=76 * (cos(\frac{3\pi}{16}) +isin(\frac{3\pi}{16}) )[/tex]
The value of ZW is [tex]\begin{aligned} (76) [Cos(\frac{3\pi}{16})+ \i\ Sin(\frac{3\pi}{16})]\end{aligned}[/tex].
Given to us,
[tex]\begin{aligned} Z &= 38 [cos(\frac{\pi}{8}) + i\ sin(\frac{\pi}{8}) ]\end{aligned}[/tex],
[tex]\begin{aligned}W &= 2 [cos(\frac{\pi}{16}) + i\ sin(\frac{\pi}{16}) ]\end{aligned}[/tex],
We know that,
[tex]{x = v_1 [ cos\ (a) +i\ sin\ (a)]}[/tex] and [tex]{y = v_2 [ cos(b) +i\ sin(b)]}[/tex]
So,
[tex]xy = (v_1 \times v_2) [ cos(a+b) + i\ sin(a+b)][/tex]
Therefore, we can write it as,
[tex]\begin{aligned}ZW &= [38cos(\frac{\pi}{8}) + 38\ i\ sin(\frac{\pi}{8}) ]\times [2cos(\frac{\pi}{16}) + 2\ i\ sin(\frac{\pi}{16}) ]\\&= (38 \times 2) \{Cos[\frac{\pi}{8} + \frac{\pi}{16}]\}+ \{i\ Sin[\frac{\pi}{8} + \frac{\pi}{16}]\} \end{aligned}[/tex]
[tex]\begin{aligned}&= (76) [Cos(\frac{3\pi}{16})+ \i\ Sin(\frac{3\pi}{16})]\end{aligned}[/tex]
Hence, the value of ZW is [tex]\begin{aligned} (76) [Cos(\frac{3\pi}{16})+ \i\ Sin(\frac{3\pi}{16})]\end{aligned}[/tex].
To know more visit:
https://brainly.com/question/13389642