Solution :
Acceleration due to gravity of the earth, g [tex]$=\frac{GM}{R^2}$[/tex]
[tex]$g=\frac{G(4/3 \pi R^2 \rho)}{R^2}=G(4/3 \pi R \rho)$[/tex]
Acceleration due to gravity at 1000 km depths is :
[tex]$g=G\left(\frac{4}{3}\pi (R-d) \rho\right)$[/tex]
[tex]$g=6.67 \times 10^{-11}\left(\frac{4}{3}\times 3.14 \times (6371-1000) \times 5.5 \times 10^3\right)$[/tex]
[tex]$= 822486 \times 10^{-8}$[/tex]
[tex]$=0.822 \times 10^{-2} \ km/s$[/tex]
= 8.23 m/s
Acceleration due to gravity at 2000 km depths is :
[tex]$g=G\left(\frac{4}{3}\pi (R-d) \rho\right)$[/tex]
[tex]$g=6.67 \times 10^{-11}\left(\frac{4}{3}\times 3.14 \times (6371-2000) \times 5.5 \times 10^3\right)$[/tex]
[tex]$= 673552 \times 10^{-8}$[/tex]
[tex]$=0.673 \times 10^{-2} \ km/s$[/tex]
= 6.73 m/s
Acceleration due to gravity at 3000 km depths is :
[tex]$g=G\left(\frac{4}{3}\pi (R-d) \rho\right)$[/tex]
[tex]$g=6.67 \times 10^{-11}\left(\frac{4}{3}\times 3.14 \times (6371-3000) \times 5.5 \times 10^3\right)$[/tex]
[tex]$= 3371 \times 153.86 \times 10^{-8}$[/tex]
= 5.18 m/s
Acceleration due to gravity at 4000 km depths is :
[tex]$g=G\left(\frac{4}{3}\pi (R-d) \rho\right)$[/tex]
[tex]$g=6.67 \times 10^{-11}\left(\frac{4}{3}\times 3.14 \times (6371-4000) \times 5.5 \times 10^3\right)$[/tex]
[tex]$= 153.84 \times 2371 \times 10^{-8}$[/tex]
[tex]$=0.364 \times 10^{-2} \ km/s$[/tex]
= 3.64 m/s