Calculate the acceleration of gravity as a function of depth in the earth (assume it is a sphere). You may use an average density from the attached density profile for a spherical shell (which does not have to be very thin, for example, a shell from the inner core-outer core boundary to the middle depth of the outer core). Do not make the shell contains a large density contrast. Calculate enough points to make the g profile. Note that only the mass at radius less than r contributes to the gravitational acceleration. (15 points)

Respuesta :

Solution :

Acceleration due to gravity of the earth, g [tex]$=\frac{GM}{R^2}$[/tex]

[tex]$g=\frac{G(4/3 \pi R^2 \rho)}{R^2}=G(4/3 \pi R \rho)$[/tex]

Acceleration due to gravity at 1000 km depths is :

[tex]$g=G\left(\frac{4}{3}\pi (R-d) \rho\right)$[/tex]

[tex]$g=6.67 \times 10^{-11}\left(\frac{4}{3}\times 3.14 \times (6371-1000) \times 5.5 \times 10^3\right)$[/tex]

  [tex]$= 822486 \times 10^{-8}$[/tex]

  [tex]$=0.822 \times 10^{-2} \ km/s$[/tex]

 = 8.23 m/s

Acceleration due to gravity at 2000 km depths is :

[tex]$g=G\left(\frac{4}{3}\pi (R-d) \rho\right)$[/tex]

[tex]$g=6.67 \times 10^{-11}\left(\frac{4}{3}\times 3.14 \times (6371-2000) \times 5.5 \times 10^3\right)$[/tex]

  [tex]$= 673552 \times 10^{-8}$[/tex]

  [tex]$=0.673 \times 10^{-2} \ km/s$[/tex]

 = 6.73 m/s

Acceleration due to gravity at 3000 km depths is :

[tex]$g=G\left(\frac{4}{3}\pi (R-d) \rho\right)$[/tex]

[tex]$g=6.67 \times 10^{-11}\left(\frac{4}{3}\times 3.14 \times (6371-3000) \times 5.5 \times 10^3\right)$[/tex]

  [tex]$= 3371 \times 153.86 \times 10^{-8}$[/tex]

  = 5.18 m/s

Acceleration due to gravity at 4000 km depths is :

[tex]$g=G\left(\frac{4}{3}\pi (R-d) \rho\right)$[/tex]

[tex]$g=6.67 \times 10^{-11}\left(\frac{4}{3}\times 3.14 \times (6371-4000) \times 5.5 \times 10^3\right)$[/tex]

  [tex]$= 153.84 \times 2371 \times 10^{-8}$[/tex]

  [tex]$=0.364 \times 10^{-2} \ km/s$[/tex]

 = 3.64 m/s

       

Ver imagen AbsorbingMan
ACCESS MORE