Answer:
Php2040.38
Step-by-step explanation:
Given
[tex]P = 2000[/tex] --- Principal
[tex]r = 1\%[/tex] --- Rate
[tex]t = 2\ years[/tex] --- Time
[tex]n = 12[/tex] --- monthly
Required
Determine the amount at the end of two years
This is calculated as:
[tex]A = P(1 + \frac{r}{n})^{nt}[/tex]
So, we have:
[tex]A = 2000(1 + \frac{1\%}{12})^{12*2}[/tex]
[tex]A = 2000(1 + \frac{1}{100*12})^{24}[/tex]
[tex]A = 2000(1 + \frac{1}{1200})^{24}[/tex]
[tex]A = 2000(\frac{1200+1}{1200})^{24}[/tex]
[tex]A = 2000(\frac{1201}{1200})^{24}[/tex]
[tex]A = 2000*1.02019[/tex]
[tex]A = 2040.38[/tex]
Hence, the final amount is: Php2040.38