Respuesta :

Answer:

Step-by-step explanation:

The missing information includes finding the volume of the circle x² + y² = 4 from the x-axis of the squares and the equilateral triangles.

[tex]x^2 + y^2 = 4[/tex]

Perpendicular to x-axis

[tex]y = \sqrt{4 -x^2}[/tex]

Area of the square = [tex]( \sqrt{4-x^2}+ \sqrt{4-x^2})^2[/tex]

[tex]= (2 \sqrt{4 -x^2})^2 \\ \\ = 4(4-x^2) \\ \\ = 16 - 4x^2[/tex]

Volume  V = [tex]\int ^2_{-2} (16 -4x^2) \ dx[/tex]

[tex]= \Big [ 16x - \dfrac{4x^3}{3} \Big]^2_{-2}[/tex]

[tex]= \Big [32 - \dfrac{32}{3} \Big] - \Big[-32 +\dfrac{32}{3} \Big][/tex]

[tex]= \dfrac{128}{3}[/tex]

Area of Equilateral triangle

[tex]= \dfrac{1}{2}\times 2 \sqrt{4-x^2}\times \sqrt{3}\sqrt{4-x^2}[/tex]

[tex]= \sqrt{3}(\sqrt{4-x^2})^2[/tex]

[tex]Volume (V )= \int ^2_{-2}\sqrt{3} (4 -x^2) \ dx[/tex]

[tex]= 4\sqrt{3} \ x - \dfrac{\sqrt{3} \ x^3 }{3} \Big|^2_{-2} \\ \\ = 16 \sqrt{3} - \dfrac{16\sqrt{3}}{3} \\ \\ = \dfrac{32\sqrt{2}}{3}[/tex]

ACCESS MORE