Answer:
[tex]\displaystyle t = \frac{2 \pi}{3}, \ \frac{4 \pi}{3}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Functions
- Function Notation
- [Interval Notation] - [Brackets] imply inclusive, (Parenthesis) imply exclusive
Pre-Calculus
Calculus
Derivatives
Derivative Notation
The definition of a derivative is the slope of the tangent line
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Trig Derivative: [tex]\displaystyle \frac{d}{dx}[sinu] = u'cosu[/tex]
Step-by-step explanation:
Step 1: Define
[Given] q(t) = t + 2sint
[Given] Interval [0, 2π]
[Solve] q'(t) = 0
- Horizontal tangent line have a slope of 0
Step 2: Differentiate
- [Derivative] Basic Power Rule/Trig Derivative [Derivative Prop - Add]: [tex]\displaystyle q'(t) = 1 \cdot t^{1 - 1} + 1 \cdot 2cost[/tex]
- [Derivative] Simplify exponent: [tex]\displaystyle q'(t) = 1 \cdot t^{0} + 1 \cdot 2cost[/tex]
- [Derivative] Evaluate exponent: [tex]\displaystyle q'(t) = 1 \cdot 1 + 1 \cdot 2cost[/tex]
- [Derivative] Multiply: [tex]\displaystyle q'(t) = 1 + 2cost[/tex]
Step 3: Solve
- [Derivative] Substitute in function value: [tex]\displaystyle 0 = 1 + 2cost[/tex]
- [Subtraction Property of Equality] Isolate t term: [tex]\displaystyle -1 = 2cost[/tex]
- Rewrite: [tex]\displaystyle 2cost = -1[/tex]
- [Division Property of Equality] Isolate trig t term: [tex]\displaystyle cost = \frac{-1}{2}[/tex]
- [Equality Property] Inverse Trig: [tex]\displaystyle t = cos^{-1}(\frac{-1}{2})[/tex]
- Evaluate [Unit Circle, Interval]: [tex]\displaystyle t = \frac{2 \pi}{3}, \ \frac{4 \pi}{3}[/tex]
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Derivatives
Book: College Calculus 10e