Respuesta :

Space

Answer:

[tex]\displaystyle t = \frac{2 \pi}{3}, \ \frac{4 \pi}{3}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Functions
  • Function Notation
  • [Interval Notation] - [Brackets] imply inclusive, (Parenthesis) imply exclusive

Pre-Calculus

  • Unit Circle

Calculus

Derivatives

Derivative Notation

The definition of a derivative is the slope of the tangent line

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Property [Addition/Subtraction]:                                                          [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Derivative Property [Multiplied Constant]:                                                            [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Trig Derivative:                                                                                                        [tex]\displaystyle \frac{d}{dx}[sinu] = u'cosu[/tex]

Step-by-step explanation:

Step 1: Define

[Given] q(t) = t + 2sint

[Given] Interval [0, 2π]

[Solve] q'(t) = 0

  • Horizontal tangent line have a slope of 0

Step 2: Differentiate

  1. [Derivative] Basic Power Rule/Trig Derivative [Derivative Prop - Add]:      [tex]\displaystyle q'(t) = 1 \cdot t^{1 - 1} + 1 \cdot 2cost[/tex]
  2. [Derivative] Simplify exponent:                                                                     [tex]\displaystyle q'(t) = 1 \cdot t^{0} + 1 \cdot 2cost[/tex]
  3. [Derivative] Evaluate exponent:                                                                    [tex]\displaystyle q'(t) = 1 \cdot 1 + 1 \cdot 2cost[/tex]
  4. [Derivative] Multiply:                                                                                       [tex]\displaystyle q'(t) = 1 + 2cost[/tex]

Step 3: Solve

  1. [Derivative] Substitute in function value:                                                      [tex]\displaystyle 0 = 1 + 2cost[/tex]
  2. [Subtraction Property of Equality] Isolate t term:                                          [tex]\displaystyle -1 = 2cost[/tex]
  3. Rewrite:                                                                                                           [tex]\displaystyle 2cost = -1[/tex]
  4. [Division Property of Equality] Isolate trig t term:                                         [tex]\displaystyle cost = \frac{-1}{2}[/tex]
  5. [Equality Property] Inverse Trig:                                                                    [tex]\displaystyle t = cos^{-1}(\frac{-1}{2})[/tex]
  6. Evaluate [Unit Circle, Interval]:                                                                       [tex]\displaystyle t = \frac{2 \pi}{3}, \ \frac{4 \pi}{3}[/tex]

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

Otras preguntas