Answer:
The answer is below
Explanation:
Given that:
Hot reservoir temperature ([tex]T_H[/tex]) = 550 K, Cold reservoir temperature ([tex]T_C[/tex]) = 300 K, power input ([tex]W_{cycle}=500 \ kW[/tex]), cycle's coefficient of performance([tex]\beta_{actual}[/tex]) = 1.6
a) The rate of energy removal in the cold reservoir ([tex]Q_C[/tex]) is given by the formula:
[tex]Q_C=\beta_{actual}* W_{cycle}\\\\Q_C=1.6*500\\\\Q_C=800\ kW[/tex]
b) The maximum cycle's coefficient of performance([tex]\beta_{max}[/tex]) is:
[tex]\beta_{max}=\frac{T_C}{T_H-T_C}=\frac{300}{550-300}=1.5\\\\For\ minimum\ theoretical\ power\ \beta_{max}=\beta_{actual}=1.5\\\\W_{cycle}=\frac{Q_C}{\beta_{actual}} =\frac{800}{1.5} \\\\W_{cycle}=533.3\ kW[/tex]