Answer:
Step-by-step explanation:
[tex]y=-3(x^2+10x+25)-1\\ \\ y=-3x^2-30x-76\\ \\ dy=-6x-30\\ \\ d^2y=-6\\ \\ \text{Since the second derivative is always negative, when the first derivative is equal to zero the function will be at a global maximum.}\\ \\ dy=0=-6x-30\\ \\ x=-5\\ \\ f(-5)=-1\\ \\ \text{So the global maximum occurs at the point (-5,-1)[/tex]