Answer:
Projects W and X have lower expected returns
Projects Y and Z have higher expected returns
Explanation:
Given
[tex]\begin{array}{ccc}{Project} & {Beta} & {IRR} & {W} & {.67} & {9.5\%} & {X} & {.74} & {10.6\%} & {Y} & {1.37} & {14.1\%}& {Z} & {1.48} & {17.1\%} \ \end{array}[/tex]
[tex]T\ Bill\ Rate = 5.1\%[/tex]
[tex]Expected\ Return = 12.1\%[/tex]
Solving (a): Compare the expected return of each project to 12.1%
Expected Return of each project is calculated as:
[tex]Project = T\ Bill + (Beta * (Expected\ Return - T\ Bill))[/tex]
[tex]Project = 5.1\% + (Beta * (12.1\% - 5.1\%))[/tex]
[tex]Project = 5.1\% + (Beta * 7.0\%)[/tex]
For Project W:
[tex]W= 5.1\% + (0.67* 7.0\%)[/tex]
[tex]W= 5.1\% + 4.69\%[/tex]
[tex]W= 9.79\%[/tex]
Lower Expected return
For Project X:
[tex]X = 5.1\% + (0.74 * 7.0\%)[/tex]
[tex]X = 5.1\% + 5.18\%[/tex]
[tex]X = 10.28\%[/tex]
Lower Expected return
For Project Y:
[tex]Y = 5.1\% + (1.37 * 7.0\%)[/tex]
[tex]Y = 5.1\% + 9.59\%[/tex]
[tex]Y = 14.69\%[/tex]
Higher Expected return
For Project Z:
[tex]Z = 5.1\% + (1.48 * 7.0\%)[/tex]
[tex]Z = 5.1\% + 10.36\%[/tex]
[tex]Z = 15.46\%[/tex]
Higher Expected return
There is no question in (b)