if triangle dgh is congruent to triangle def find the value of x
![if triangle dgh is congruent to triangle def find the value of x class=](https://us-static.z-dn.net/files/dd5/cfcdade0fef1b58e34860658cd765ae6.png)
Answer:
x = 25
Step-by-step explanation:
[tex] \triangle DGH\sim\triangle DEF... (given) [/tex]
[tex] \frac{DG}{DE} =\frac{GH}{EF} [/tex]
[tex] \frac{52}{91} =\frac{x+3}{2x-1} [/tex]
[tex] \frac{4}{7} =\frac{x+3}{2x-1} [/tex]
4(2x - 1) = 7(x + 3)
8x - 4 = 7x + 21
8x - 7x = 21 + 4
x = 25