Respuesta :
Answer:
The points are (1, -11) and (17, -11).
Step-by-step explanation:
The distance between points (x1, y1) and (x2, y2) is
[tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
We have values for x1, y1, and y2. We leave x for x2, and we solve for x.
[tex] 17 = \sqrt{(x - 9)^2 + (-11 - 4)^2} [/tex]
Square both sides.
[tex] 289 = (x - 9)^2 + (-11 - 4)^2 [/tex]
[tex] 289 = x^2 - 18x + 81 + 225 [/tex]
[tex] x^2 - 18x + 17 = 0 [/tex]
[tex] (x - 1)(x - 17) = 0 [/tex}
[tex] x - 1 = 0 [/tex] or [tex] x - 17 = 0 [/tex]
x = 1 or x = 17
The points are (1, -11) and (17, -11).
Using distance between two points, it is found that the values are: x = 17, x = 1.
----------------------------
Distance between two points:
Suppose that we have two points, [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]. The distance between them is given by:
[tex]D = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
----------------------------
- Points (9,4) and (x, -11).
- Distance of 17, thus [tex]D = 17[/tex]
[tex]D = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]\sqrt{(x - 9)^2 + (-11 - 4)^2} = 17[/tex]
[tex](\sqrt{(x - 9)^2 + (-11 - 4)^2})^2 = 17^2[/tex]
[tex](x - 9)^2 + (-15)^2 = 289[/tex]
[tex]x^2 - 18x + 81 + 225 = 289[/tex]
[tex]x^2 - 18x + 17 = 0[/tex]
Quadratic equation with [tex]a = 1, b = -18, c = 17[/tex].
Applying Bhaskara:
[tex]\Delta = b^2 - 4ac = (-18)^2 - 4(1)(17) = 256[/tex]
[tex]x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-18) + \sqrt{256}}{2} = 17[/tex]
[tex]x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-18) - \sqrt{256}}{2} = 1[/tex]
The values are: x = 17, x = 1.
A similar problem is given at https://brainly.com/question/22532602