Respuesta :

Answer:

[tex]p_{o} = 6[/tex], [tex]r = 2[/tex], [tex]p_{12} = 24576[/tex].

Step-by-step explanation:

The value of [tex]p_{o}[/tex] is the first value of the geometric series, that is, [tex]p_{o} = 6[/tex].

If the series represents a geometric sequence, then [tex]r[/tex] must be constant for every consecutive pair of elements, that is:

[tex]r_{1} = \frac{p_{1}}{p_{o}} = \frac{12}{6} = 2[/tex]

[tex]r_{2} = \frac{p_{2}}{p_{1}} = \frac{24}{12} = 2[/tex]

[tex]r_{3} = \frac{p_{3}}{p_{2}} = \frac{48}{24} = 2[/tex]

Since [tex]r_{1} = r_{2} = r_{3} = 2[/tex], [tex]r = 2[/tex].

The geometric sequence can be represented by the following formula:

[tex]p_{n} = p_{o}\cdot r^{n}[/tex], for [tex]n \in \mathbb{N}[/tex]

The 12th element of the geometric sequence is: ([tex]p_{o} = 6[/tex], [tex]r = 2[/tex], [tex]n = 12[/tex])

[tex]p_{12} = 6\cdot 2^{12}[/tex]

[tex]p_{12} = 24576[/tex]

RELAXING NOICE
Relax