Write a rule for g described by the transformation of the graph of f...

Answer:
[tex]g(x) = 4-4\sqrt{x}[/tex]
Step-by-step explanation:
Given
[tex]f(x) = 4\sqrt{x}+1[/tex]
1. 5 units down translation
2. Reflection in the x-axis
Required
Determine the resulting function g
1. 5 units down translation
This is defined by the rule:
A down translation is:
[tex]f'(x) = f(x) - b[/tex]
Where b is the number of units.
So, we have:
[tex]f'(x) = 4\sqrt{x} + 1 - 5[/tex]
[tex]f'(x) = 4\sqrt{x} -4[/tex]
2. Reflection in the x-axis
For a function f(x),
When reflected over the x-axis, it becomes -f(x)
So:
[tex]g(x) = -f(x)[/tex]
[tex]g(x) = -(4\sqrt{x} - 4)[/tex]
[tex]g(x) = -4\sqrt{x} +4[/tex]
[tex]g(x) = 4-4\sqrt{x}[/tex]