Respuesta :

Answer (assuming it can be written in slope-intercept form):

[tex]y = -\frac{3}{2} x-\frac{13}{2}[/tex]

Step-by-step explanation:

1) First, find the slope using the slope formula, [tex]m = \frac{y_2-y_1}{x_2-x_1}[/tex]. Substitute the x and y values of the given points into the formula and solve:

[tex]m = \frac{(1)-(-5)}{(-5)-(-1)} \\m = \frac{1+5}{-5+1} \\m = \frac{6}{-4}\\m =- \frac{3}{2}[/tex]

2) Next, use the point-slope formula [tex]y-y_1= m (x-x_1)[/tex] to write an equation. Substitute [tex]m[/tex], [tex]x_1[/tex], and [tex]y_1[/tex] for real values.

[tex]m[/tex] represents the slope, so substitute [tex]-\frac{3}{2}[/tex] for it. The [tex]x_1[/tex] and [tex]y_1[/tex] represent the x and y values of one of the points the line intersects, so choose any of the given points and substitute their x and y values into the formula. (Any choice is fine, it will result to the same equation. I chose (-5, 1) as shown below). Finally, isolate y to put the equation into slope-intercept form:

[tex]y-1 = -\frac{3}{2} (x-(-5))\\y-1 = -\frac{3}{2} (x + 5)\\y - 1 = -\frac{3}{2}x - \frac{15}{2} \\y = -\frac{3}{2} x-\frac{15}{2} +\frac{2}{2} \\y = -\frac{3}{2}x - \frac{13}{2}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico