Answer:
Proved
Step-by-step explanation:
Given
[tex]A = (-1,-1)[/tex]
[tex]B = (-1,4)[/tex]
[tex]C = (5,4)[/tex]
[tex]D = (5,-1)[/tex]
Required
Prove that PQRS is a rhombus
P = midpoint of AB
So:
[tex]P = \frac{1}{2}(-1-1,-1+4)[/tex]
[tex]P = \frac{1}{2}(-2,3)[/tex]
[tex]P = (-1,\frac{3}{2})[/tex]
Q = midpoint of BC
[tex]Q = \frac{1}{2}(-1+5,4+4)[/tex]
[tex]Q = \frac{1}{2}(4,8)[/tex]
[tex]Q = (2,4)[/tex]
R = midpoint of CD
[tex]R =\frac{1}{2}(5+5,4-1)[/tex]
[tex]R =\frac{1}{2}(10,3)[/tex]
[tex]R = (5,\frac{3}{2})[/tex]
S = midpoint of DA
[tex]S = \frac{1}{2}(5-1,-1-1)[/tex]
[tex]S = \frac{1}{2}(4,-2)[/tex]
[tex]S = (2,-1)[/tex]
So, we have:
[tex]P = (-1,\frac{3}{2})[/tex]
[tex]Q = (2,4)[/tex]
[tex]R = (5,\frac{3}{2})[/tex]
[tex]S = (2,-1)[/tex]
To show that PQRS is a rhombus, the distance between PQ, QR, RS and SW must be equal.
Distance is calculated as:
[tex]D = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}[/tex]
For PQ
[tex]D_1 = \sqrt{(-1-2)^2 + (\frac{3}{2}-4)^2}[/tex]
[tex]D_1 = \sqrt{(-3)^2 + (-\frac{5}{2})^2}[/tex]
[tex]D_1 = \sqrt{9 + \frac{25}{4}}[/tex]
[tex]D_1 = \sqrt{\frac{61}{4}}[/tex]
For QR
[tex]D_2 = \sqrt{(2-5)^2 + (4-\frac{3}{2})^2}[/tex]
[tex]D_2 = \sqrt{(-3)^2 + (\frac{5}{2})^2}[/tex]
[tex]D_2 = \sqrt{9 + \frac{25}{4}}[/tex]
[tex]D_2 = \sqrt{\frac{61}{4}}[/tex]
For RS
[tex]D_3 = \sqrt{(5-2)^2 + (\frac{3}{2}-(-1))^2}[/tex]
[tex]D_3 = \sqrt{(5-2)^2 + (\frac{3}{2}+1)^2}[/tex]
[tex]D_3 = \sqrt{(3)^2 + (\frac{5}{2})^2}[/tex]
[tex]D_3 = \sqrt{9 + \frac{25}{4}}[/tex]
[tex]D_3 = \sqrt{\frac{61}{4}}[/tex]
For SP
[tex]D_4 = \sqrt{(2-(-1))^2+(\frac{3}{2}-(-1))^2}[/tex]
[tex]D_4 = \sqrt{(2+1))^2+(\frac{3}{2}+1)^2}[/tex]
[tex]D_4 = \sqrt{(3)^2 + (\frac{5}{2})^2}[/tex]
[tex]D_4 = \sqrt{9 + \frac{25}{4}}[/tex]
[tex]D_4 = \sqrt{\frac{61}{4}}[/tex]
From the calculations above:
[tex]D_1 =D_2 =D_3 =D_4 = \sqrt{\frac{61}{4}}[/tex]
Hence: PQRS is a rhombus