Respuesta :

Answer:

The solution is:

[tex]-\frac{1}{2}x\ge \:4\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x\le \:-8\:\\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:-8]\end{bmatrix}[/tex]

The number line graph of the solution is also attached below.

From the graph, it is clear that the 2nd number line represents the solution set for the inequality.

Step-by-step explanation:

Given the inequality

[tex]-\frac{1}{2}x\ge 4[/tex]

Let us solve the inequality

[tex]-\frac{1}{2}x\ge 4[/tex]

Multiply both sides by -1 (reverse the inequality)

[tex]\left(-\frac{1}{2}x\right)\left(-1\right)\le \:4\left(-1\right)[/tex]

Simplify

[tex]\frac{1}{2}x\le \:-4[/tex]

Multiply both sides by 2

[tex]2\cdot \frac{1}{2}x\le \:2\left(-4\right)[/tex]

Simplify

[tex]x\le \:-8[/tex]

Thus, the solution is:

[tex]-\frac{1}{2}x\ge \:4\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x\le \:-8\:\\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:-8]\end{bmatrix}[/tex]

The number line graph of the solution is also attached below.

From the graph, it is clear that the 2nd number line represents the solution set for the inequality.

Ver imagen asifjavedofficial
ACCESS MORE