Respuesta :

Answer:

Given expression:

  • [tex]\sqrt[8]{81x^2y^{-9}}[/tex]

Exponential form of this expression is:

  • [tex]({81x^2y^{-9}})^{1/8}[/tex]

Further simplification if needed:

  • [tex]({81x^2y^{-9}})^{1/8}[/tex] =
  • [tex](3^4)^{1/8}(x^2)^{1/8}(y^{-9})^{1/8}[/tex] =
  • [tex]3^{1/2}x^{1/4}y^{-9/8}[/tex]

Answer:

[tex] \huge \boxed{ \boxed{ \red{{3}^{ \frac{1}{2} } {x}^{ \frac{1}{4} } {y}^{ - \frac{9 }{8} } }}}[/tex]

Step-by-step explanation:

to understand this

you need to know about:

  • law of exponent
  • PEMDAS

given:

  • [tex] \sf \sqrt[8]{81 {x}^{2} {y}^{ - 9} } [/tex]

to do:

  • simplification

tips and formulas:

  1. [tex] \tt \sqrt[n]{x} < = > {x}^{ \frac{1}{n} } [/tex]
  2. [tex] \displaystyle \sf( {x}^{m} {)}^{n} < = > {x}^{m n} [/tex]

let's solve:

[tex]step - 1 : define[/tex]

[tex] \sf \sqrt[8]{81 {x}^{2} {y}^{ - 9} } [/tex]

[tex] step - 2 : solve[/tex]

  1. [tex] \sf rewrite \: 81 \: as \: {3}^{4} : \\ \sf\sqrt[8]{ {3}^{4} {x}^{2} {y}^{ - 9} } [/tex]
  2. [tex] \sf use \: {1}^{st} \: formula : \\ \sf( {3}^{4} {x}^{2} {y}^{ - 9} {)}^{ \frac{1}{8} } [/tex]
  3. [tex] \sf use \: {2}^{nd} \: formula : \\ \sf {3}^{4\times \frac{1}{8} } \times {x}^{2 \times \frac{1}{8} } \times {y}^{ - 9 \times \frac{1}{8} } [/tex]
  4. [tex] \sf \: simplify : \\ \sf {3}^{ \frac{4}{8} } {x}^{ \frac{2}{8} } {y}^{ \frac{ - 9}{8} } \\ \therefore \sf {3}^{ \frac{1}{2} } {x}^{ \frac{1}{4} } {y}^{ - \frac{9 }{8} } [/tex]
ACCESS MORE