Respuesta :

Answer:

The two number are:

[tex]y=1,\:x=\frac{1}{4}[/tex]

Step-by-step explanation:

  • Let 'x' be the first number
  • let 'y' be the second number

Given that one number is 4 times another number, the first equation is

[tex]y = 4x[/tex]

Next, the sum of their reciprocals is 5, so

[tex]\frac{1}{x}+\frac{1}{y}=5[/tex]

Now, we have the system of equations

[tex]\begin{bmatrix}y=4x\\ \frac{1}{x}+\frac{1}{y}=5\end{bmatrix}[/tex]

Let us solve the system of equations

[tex]\begin{bmatrix}y=4x\\ \frac{1}{x}+\frac{1}{y}=5\end{bmatrix}[/tex]

substitute y = 4x in the equation [tex]\frac{1}{x}+\frac{1}{y}=5[/tex]

[tex]\frac{1}{x}+\frac{1}{4x}=5[/tex]

Least Common Multiple of x, 4x:  4x

Adjust fractions based on L.C.M

[tex]\frac{4}{4x}+\frac{1}{4x}=5[/tex]

[tex]\frac{4+1}{4x}=5[/tex]

[tex]\:\frac{5}{4x}=5[/tex]

Multiply both sides by 4x

[tex]\frac{5}{4x}\cdot \:4x=5\cdot \:4x[/tex]

Simplify

[tex]5=20x[/tex]

switch sides

[tex]20x=5[/tex]

Divide both sides by 20

[tex]\frac{20x}{20}=\frac{5}{20}[/tex]

Simplify

[tex]x=\frac{1}{4}[/tex]

For y = 4x, substitute [tex]x=\frac{1}{4}[/tex]

[tex]y = 4x[/tex]

[tex]y=4\cdot \frac{1}{4}[/tex]

[tex]y=1[/tex]

Therefore, the two number are:

[tex]y=1,\:x=\frac{1}{4}[/tex]

Verification:

[tex]\frac{1}{x}+\frac{1}{y}=5[/tex]

substituting [tex]y=1,\:x=\frac{1}{4}[/tex]

[tex]\:\frac{1}{\frac{1}{4}}+\frac{1}{1}=\:5\:\:[/tex]

[tex]4+1=5[/tex]

[tex]5 = 5[/tex]

L.H.S = R.H.S

and

[tex]y = 4x[/tex]

substituting [tex]y=1,\:x=\frac{1}{4}[/tex]

[tex]y\:=\:4\left(\frac{1}{4}\right)[/tex]

[tex]y=1[/tex]

ACCESS MORE