Respuesta :
Answer:
Approximately [tex]10\; \rm m \cdot s^{-1}[/tex] at [tex]5.6^\circ[/tex] below the horizon.
- Horizontal component of velocity: [tex]10\; \rm m \cdot s^{-1}[/tex].
- Vertical component of velocity: [tex]0.981\; \rm m\cdot s^{-1}[/tex] (downwards.)
(Assumption: air resistance on the ball is negligible; [tex]g = 9.81\; \rm m \cdot s^{-2}[/tex].)
Explanation:
Assume that the air resistance on the ball is negligible. The horizontal component of the velocity of the ball would stay the same at [tex]10\; \rm m \cdot s^{-1}[/tex] until the ball reaches the ground.
On the other hand, the vertical component of the ball would increase (downwards) at a rate of [tex]g = 9.81\; \rm m\cdot s^{-2}[/tex] (where [tex]g[/tex] is the acceleration due to gravity.) In [tex]0.1\; \rm s[/tex], the vertical component of the velocity of this ball would have increased by [tex]9.81\; \rm m \cdot s^{-2} \times 0.10\; \rm s = 0.981\; \rm m \cdot s^{-1}[/tex].
However, right after the ball rolled off the edge of the table, the vertical component of the velocity of this ball was [tex]0\; \rm m\cdot s^{-1}[/tex]. Hence, [tex]0.10\; \rm s[/tex] after the ball rolled off the table, the vertical component of the velocity of this ball would be [tex]0\; \rm m \cdot s^{-1} + 0.981\; \rm m\cdot s^{-1} = 0.981\; \rm m \cdot s^{-1}[/tex].
Calculate the magnitude of the velocity of this ball. Let [tex]v_{x}[/tex] and [tex]v_{y}[/tex] and denote the horizontal and vertical component of the velocity of this ball, respectively. The magnitude of the velocity of this ball would be [tex]\displaystyle \sqrt{{v_x}^{2} + {v_y}^{2}}[/tex].
At [tex]0.10\; \rm s[/tex] after the ball rolled off the table, [tex]v_x = 10\; \rm m \cdot s^{-1}[/tex] while [tex]v_y = 0.981\; \rm m \cdot s^{-1}[/tex]. Calculate the magnitude of the velocity of the ball at this moment:
[tex]\begin{aligned} \| v \| &= \sqrt{{v_x}^{2} + {v_y}^{2}} \\ &= \sqrt{\left(10\; \rm m \cdot s^{-1}\right)^{2} + \left(0.981\; \rm m \cdot s^{-1}\right)^{2}} \\ &\approx 10.0\; \rm m\cdot s^{-1}\end{aligned}[/tex].
Calculate the angle between the horizon and the velocity of the ball (a vector) at that moment. Let [tex]\theta[/tex] denote that angle.
[tex]\displaystyle \tan \theta = \frac{\text{rise}}{\text{run}}[/tex].
For the vector representing the velocity of this ball:
[tex]\displaystyle \tan \theta = \frac{0.981\; \rm m \cdot s^{-1}}{10\; \rm m \cdot s^{-1}} = 0.0981[/tex].
Calculate the size of this angle:
[tex]\theta = \arctan 0.0981 \approx 5.62^\circ[/tex].
Notice that the vertical component of the velocity of this ball at that moment points downwards (towards the ground.) Hence, the corresponding velocity should point below the horizon.