Given:
[tex]4,4+2x,4+4x[/tex] are in geometric sequences.
To find:
The value of x.
Solution:
If a, b, c are in geometric sequences, then
[tex]\dfrac{b}{a}=\dfrac{c}{b}[/tex]
[tex]b^2=ac[/tex] ...(i)
It is given that [tex]4,4+2x,4+4x[/tex] are in geometric sequences. By using (i), we get
[tex](4+2x)^2=(4)(4+4x)[/tex]
[tex]4^2+2(4)(2x)+(2x)^2=(4)(4)+4(4x)[/tex]
[tex]16+16x+4x^2=16+16x[/tex]
[tex]4x^2=16+16x-16-16x[/tex]
On further simplification, we get
[tex]4x^2=0[/tex]
[tex]x^2=0[/tex]
[tex]x=0[/tex]
Therefore, the value of x is 0.