Respuesta :

Given:

[tex]4,4+2x,4+4x[/tex] are in geometric sequences​.

To find:

The value of x.

Solution:

If a, b, c are in geometric sequences​, then

[tex]\dfrac{b}{a}=\dfrac{c}{b}[/tex]

[tex]b^2=ac[/tex]           ...(i)

It is given that [tex]4,4+2x,4+4x[/tex] are in geometric sequences​. By using (i), we get

[tex](4+2x)^2=(4)(4+4x)[/tex]

[tex]4^2+2(4)(2x)+(2x)^2=(4)(4)+4(4x)[/tex]

[tex]16+16x+4x^2=16+16x[/tex]

[tex]4x^2=16+16x-16-16x[/tex]

On further simplification, we get

[tex]4x^2=0[/tex]

[tex]x^2=0[/tex]

[tex]x=0[/tex]

Therefore, the value of x is 0.