Respuesta :

Answer:

a. 0

b. 4^1

c. 14

d. 8

Step-by-step explanation:

Answer:

Step-by-step explanation:

[tex]a^{m}*a^{n}=a^{m+n}\\\\\frac{a^{m}}{a^{n}}=a^{m-n}\\\\(a^{m})^{n}=a^{m*n}\\\\a) 3^{5}*3^{x} = 3^{3}*9=3^{3}*3^{2}\\\\ 3^{5+x} =3^{3+2}[/tex]

Compare the exponents,

5 +x = 5

     x = 5-5

      x = 0

[tex]b) \frac{4^{x}*4^{8}}{4^{2}}=(4^{7})^{1}\\\\4^{x+8-2}=4^{7*1}\\4^{x + 6}=4^{7}[/tex]

Compare the exponents,

x +6 = 7

    x = 7-6

    x = 1

[tex]c)\frac{a^{8}*a^{5}}{a^{2}}=\frac{a^{x}}{a^{2}}\\\\a^{8+5-2}=a^{x-2}\\\\a^{11}=a^{x-2}[/tex]

Compare the exponents,

x - 2 = 11

     x = 11+2

    x = 13

[tex]d)\frac{(5^{3})^{x}}{5^{6}}=5^{10}*5^{8}\\\\5^{3x-6}=5^{10+8}\\\\5^{3x-6}=5^{18}[/tex]

Compare the exponents,

3x -6= 18

3x = 18 + 6

3x = 24

  x = 24/3

x = 8

ACCESS MORE