Respuesta :

Answer:

[tex]n = 5[/tex]

Step-by-step explanation:

Given

[tex]^nP_2 = 20[/tex]

Required

Find n

To do this, we apply permutation formula.

[tex]^nP_r = \frac{n!}{(n-r)!}[/tex]

So, we have:

[tex]\frac{n!}{(n-2)!} = 20[/tex]

Expand the numerator

[tex]\frac{n(n-1)(n-2)!}{(n-2)!} = 20[/tex]

Divide by (n-2)!

[tex]n(n-1)= 20[/tex]

Expand

[tex]n^2 - n = 20[/tex]

[tex]n^2 - n - 20 = 0[/tex]

Expand

[tex]n^2 +4n -5n - 20 = 0[/tex]

Factorize

[tex]n(n+4)-5(n+4)= 0[/tex]

[tex](n-5)(n+4) = 0[/tex]

[tex]n - 5 = 0[/tex] or [tex]n + 4 = 0[/tex]

[tex]n = 5[/tex] or [tex]n = -4[/tex]

Since n cannot be negative, then:

[tex]n = 5[/tex]

ACCESS MORE