Respuesta :

Answer:

The value of [tex]a[/tex] is 6.

Step-by-step explanation:

Let the line be represented by [tex]3\cdot y = a\cdot x + 6[/tex], where [tex]x[/tex], [tex]y[/tex] are the independent and dependent variable, respectively. The explicit form of the formula is:

[tex]y = \frac{a}{3}\cdot x +2[/tex] (1)

To know the value of [tex]a[/tex], ,we need the values of [tex]x[/tex] and [tex]y[/tex] and solve the resulting expression: [tex](x,y) = (-3,-4)[/tex]

[tex]-4 = \frac{a}{3} \cdot (-3)+2[/tex]

[tex]-4 = -a + 2[/tex]

[tex]a = 6[/tex]

The value of [tex]a[/tex] is 6.

ACCESS MORE