Given:
Scale factor [tex]s=\dfrac{1}{3}[/tex]
Center of dilation = (4,2)
To find:
The coordinates of the points C' and A.
Solution:
We know that, if a figure is dilated with a scale factor k and the center of dilation is at the point (a,b), then
[tex](x,y)\to (k(x-a)+a,k(y-b)+b)[/tex]
The scale factor is [tex]\dfrac{1}{3}[/tex] and the center of dilation is at (4,2).
[tex](x,y)\to (\dfrac{1}{3}(x-4)+4,\dfrac{1}{3}(y-2)+2)[/tex] ...(i)
Suppose the vertices of red triangle are A(m,n), B(10,14) and C(-2,11).
Using rule (i), we get
[tex]C(-2,11)\to C'(\dfrac{1}{3}(-2-4)+4,\dfrac{1}{3}(11-2)+2)[/tex]
[tex]C(-2,11)\to C'(\dfrac{1}{3}(-6)+4,\dfrac{1}{3}(9)+2)[/tex]
[tex]C(-2,11)\to C'(-2+4,3+2)[/tex]
[tex]C(-2,11)\to C'(2,5)[/tex]
Hence, the coordinates of Point C' are C'(2,5).
Let us assume that point A is A(m,n).
Using rule (i), we get
[tex]A(m,n)\to A'(\dfrac{1}{3}(m-4)+4,\dfrac{1}{3}(n-2)+2)[/tex]
From the given figure it is clear that the image of point A is (8,4).
[tex]A'(\dfrac{1}{3}(m-4)+4,\dfrac{1}{3}(n-2)+2)=A'(8,4)[/tex]
On comparing both sides, we get
[tex]\dfrac{1}{3}(m-4)+4=8[/tex]
[tex]\dfrac{1}{3}(m-4)=8-4[/tex]
[tex](m-4)=3(4)[/tex]
[tex]m=12+4[/tex]
[tex]m=16[/tex]
And,
[tex]\dfrac{1}{3}(n-2)+2=4[/tex]
[tex]\dfrac{1}{3}(n-2)=4-2[/tex]
[tex](n-2)=3(2)[/tex]
[tex]n=6+2[/tex]
[tex]n=8[/tex]
Therefore, the coordinates of point A are (16,8).