Respuesta :

Given:

A figure in which a transversal line intersect two parallel lines.

[tex]m\angle 2=4x+7, m\angle 7=5x-13, m\angle 5=68[/tex] and [tex]m\angle 3=3y-2[/tex].

To find:

The value of x and y.

Solution:

We know that, if a transversal line intersect two parallel lines, then

(1) Alternate exterior angles are equal.

(2) Same sided interior angles are supplementary. So their sum is 180 degrees.

In the given figure j and k are parallel lines and l is a transversal line.

From the given figure, it is clear that,

[tex]m\angle 2=m\angle 7[/tex]                (Alternate exterior angles are equal)    

[tex]4x+7=5x-13[/tex]

[tex]7+13=5x-4x[/tex]

[tex]20=x[/tex]

Therefore, the value of x is 20.

Now,

[tex]\angle 3+\angle 5=180[/tex]     (Same sided interior angles are supplementary)

[tex]3y-2+68=180[/tex]

[tex]3y+66=180[/tex]

[tex]3y=180-66[/tex]

[tex]y=\dfrac{180-66}{3}[/tex]

[tex]y=\dfrac{114}{3}[/tex]

[tex]y=38[/tex]

Therefore, the value of y is 38.

ACCESS MORE