Respuesta :

Space

Answer:

[tex]\displaystyle \frac{x + 2}{x + 9}, \ x \neq -9, \ 12[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Terms/Coefficients
  • Factoring

Algebra II

  • Discontinuities
  • Domain Restrictions

Step-by-step explanation:

Step 1: Define

[tex]\displaystyle \frac{x^2 - 10x - 24}{x^2 - 3x - 108}[/tex]

Step 2: Simplify

  1. [Fraction] Factor numerator:                                                                           [tex]\displaystyle \frac{(x - 12)(x + 2)}{x^2 - 3x - 108}[/tex]
  2. [Fraction] Factor denominator:                                                                       [tex]\displaystyle \frac{(x - 12)(x + 2)}{(x - 12)(x + 9)}[/tex]
  3. [Fraction] Divide:                                                                                              [tex]\displaystyle \frac{x + 2}{x + 9}[/tex]

We know that x cannot equal -9 because we would get a divide by 0 (undefined) error. We also know that x cannot equal 12 because it was canceled out when simplifying.