Respuesta :

Space

Answer:

[tex]\displaystyle \frac{8}{x - 11}, x \neq 2, 11[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Terms/Coefficients
  • Factoring

Algebra II

  • Discontinuities
  • Domain Restrictions

Step-by-step explanation:

Step 1: Define

[tex]\displaystyle \frac{8x - 16}{x^2 - 13x + 22}[/tex]

Step 2: Simplify

  1. [Fraction] Factor numerator:                                                                          [tex]\displaystyle \frac{8(x - 2)}{x^2 - 13x + 22}[/tex]
  2. [Fraction] Factor denominator:                                                                       [tex]\displaystyle \frac{8(x - 2)}{(x - 11)(x - 2)}[/tex]
  3. [Fraction] Divide:                                                                                            [tex]\displaystyle \frac{8}{x - 11}[/tex]

We know that x cannot equal 11, because that would give us a divide by 0 error and we know that x cannot equal 2 because it was canceled out when simplifying.

ACCESS MORE