Respuesta :

Answer:

let's start.

Step-by-step explanation:

                         [tex]\frac{(1+tanx)}{sinx} -secx = cscx\\[/tex]

we can write it as

                        [tex]\frac{(1 + tanx)}{sinx} = cscx + secx[/tex]

starting with left hand side

LHS    

       [tex]\frac{(1 + tanx)}{sinx}[/tex]

      [tex]\frac{1}{sinx} + \frac{tanx}{sinx}\\\\cscx + tanx *\frac{1}{sinx}\\\\cscx + \frac{sinx}{cosx} *\frac{1}{sinx}\\\\cscx + \frac{1}{cosx}\\\\cscx + secx[/tex]  

       

∴ LHS = RHS

hence,   proved        

Answer:

See below

Step-by-step explanation:

  • (1 + tanx)/sinx - secx = cscx
  • 1/ sinx + tanx/ sinx - 1/cosx = cscx
  • 1/ sinx + sinx/ cosx × 1/sinx - 1/ cos x = cscx
  • 1/ sinx + 1/cosx - 1/cosx = cscx
  • 1/ sinx  = cscx
  • cscx = cscx