Respuesta :

Answer:

[tex]\boxed {\boxed {\sf d= 6}}[/tex]

Step-by-step explanation:

Distance can be found using this formula:

[tex]d=\sqrt {(x_2-x_1)^2+(y_2-y_1)^2[/tex]

Where (x₁, y₁) and (x₂, y₂) are the points.

We are given the points O (-3, -2) and P(-3,4). Therefore,

[tex]x_1= -3 \\y_1= -2 \\x_2= -3 \\y_2=4[/tex]

Substitute the values into the formula.

[tex]d=\sqrt {(-3--3)^2+(4--2)^2[/tex]

Solve according to PEMDAS: Parentheses, Exponents, Multiplication, Division, Addition and Subtraction.

Solve inside the parentheses first.

  • (-3--3)= -3+3=0
  • (4--2)= 4+2=6

[tex]d= \sqrt {(0)^2+ (6)^2}[/tex]

Solve the exponents.

  • (0)²= 0*0=0
  • (6)²= 6*6=36

[tex]d=\sqrt {0+36[/tex]

Add.

[tex]d= \sqrt {36[/tex]

Take the square root.

[tex]d=6[/tex]

The distance is 6.

ACCESS MORE