Answer:
[tex]\boxed {\boxed {\sf d= 6}}[/tex]
Step-by-step explanation:
Distance can be found using this formula:
[tex]d=\sqrt {(x_2-x_1)^2+(y_2-y_1)^2[/tex]
Where (x₁, y₁) and (x₂, y₂) are the points.
We are given the points O (-3, -2) and P(-3,4). Therefore,
[tex]x_1= -3 \\y_1= -2 \\x_2= -3 \\y_2=4[/tex]
Substitute the values into the formula.
[tex]d=\sqrt {(-3--3)^2+(4--2)^2[/tex]
Solve according to PEMDAS: Parentheses, Exponents, Multiplication, Division, Addition and Subtraction.
Solve inside the parentheses first.
[tex]d= \sqrt {(0)^2+ (6)^2}[/tex]
Solve the exponents.
[tex]d=\sqrt {0+36[/tex]
Add.
[tex]d= \sqrt {36[/tex]
Take the square root.
[tex]d=6[/tex]
The distance is 6.