Respuesta :
Answer:
f(x) = 1/x
Step-by-step explanation:
h(x) = f(g(x)) = f(x-6) = 1/x-6
1/x-6 could only be accomplished if f(x) = 1/x
Assuming f(x) = 1/x and g(x) = x-6, f(g(x)) = f(x-6) = 1/x-6
Since f(g(x)) = 1/x-6 = h(x), we've proven that f(x) = 1/x.
The given functions are illustrations of a composite function, where the function f(x) is:
[tex]f(x) = \frac{1}{x}[/tex]
Given that:
[tex]h(x) = \frac{1}{x - 6}[/tex]
[tex]g(x) = x - 6[/tex]
f o g can be written as f(g(x))
So, we have:
[tex]h(x) = f(g(x))[/tex]
Rewrite as:
[tex]f(g(x)) = \frac{1 }{x - 6}[/tex]
Substitute g(x) for x - 6
[tex]f(g(x)) = \frac{1 }{g(x)}[/tex]
Replace g(x) with x
[tex]f(x) = \frac{1}{x}[/tex]
Hence, the function f(x) is: [tex]f(x) = \frac{1}{x}[/tex]
Read more about composite functions at:
https://brainly.com/question/8776301