Respuesta :

Space

Answer:

[tex]\displaystyle d = \sqrt{74}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Algebra II

  • Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Point (6, 2) → x₁ = 6, y₁ = 2

Point (1, -5) → x₂ = 1, y₂ = -5

Step 2: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [Distance Formula]:                                                       [tex]\displaystyle d = \sqrt{(1-6)^2+(-5-2)^2}[/tex]
  2. [Distance] [√Radical] (Parenthesis) Subtract:                                                 [tex]\displaystyle d = \sqrt{(-5)^2+(-7)^2}[/tex]
  3. [Distance] [√Radical] Evaluate exponents:                                                   [tex]\displaystyle d = \sqrt{25+49}[/tex]
  4. [Distance] [√Radical] Add:                                                                                [tex]\displaystyle d = \sqrt{74}[/tex]
ACCESS MORE