Respuesta :

Space

Answer:

[tex]\displaystyle d = 4\sqrt{5}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Algebra II

  • Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Point (-5, 6) → x₁ = -5, y₁ = 6

Point (3, 2) → x₂ = 3, y₂ = 2

Step 2: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [Distance Formulas]:                                                     [tex]\displaystyle d = \sqrt{(3+5)^2+(2-6)^2}[/tex]
  2. [Distance] [√Radical] (Parenthesis) Add/Subtract:                                       [tex]\displaystyle d = \sqrt{(8)^2+(-4)^2}[/tex]
  3. [Distance] [√Radical] Evaluate exponents:                                                    [tex]\displaystyle d = \sqrt{64+16}[/tex]
  4. [Distance] [√Radical] Add:                                                                             [tex]\displaystyle d = \sqrt{80}[/tex]
  5. [Distance] [√Radical] Simplify:                                                                         [tex]\displaystyle d = 4\sqrt{5}[/tex]
ACCESS MORE