Respuesta :
Answer:
[tex]\displaystyle r = \sqrt{10}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Coordinates (x, y)
Geometry
- Definition of a radius - the center of a circle to any point to the circumference
Algebra II
- Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Center (2, -3) → x₁ = 2, y₁ = -3
Circumference point (-1, -2) → x₂ = -1, y₂ = -2
In this case, the distance d from the center to the circumference point would be the radius r of the circle.
Step 2: Find Radius r
- [Distance Formula] Define equation [Radius]: [tex]\displaystyle r = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
- Substitute in points [Radius]: [tex]\displaystyle r = \sqrt{(-1-2)^2+(-2--3)^2}[/tex]
- [Radius] [√Radical] (Parenthesis) Simplify: [tex]\displaystyle r = \sqrt{(-1-2)^2+(-2+3)^2}[/tex]
- [Radius] [√Radical] (Parenthesis) Subtract/Add: [tex]\displaystyle r = \sqrt{(-3)^2+(1)^2}[/tex]
- [Radius] [√Radical] Evaluate exponents: [tex]\displaystyle r = \sqrt{9+1}[/tex]
- [Radius] [√Radical] Add: [tex]\displaystyle r = \sqrt{10}[/tex]