Respuesta :

Space

Answer:

[tex]\displaystyle r = \sqrt{10}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Geometry

  • Definition of a radius - the center of a circle to any point to the circumference

Algebra II

  • Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Center (2, -3) → x₁ = 2, y₁ = -3

Circumference point (-1, -2) → x₂ = -1, y₂ = -2

In this case, the distance d from the center to the circumference point would be the radius r of the circle.

Step 2: Find Radius r

  1. [Distance Formula] Define equation [Radius]:                                               [tex]\displaystyle r = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
  2. Substitute in points [Radius]:                                                                         [tex]\displaystyle r = \sqrt{(-1-2)^2+(-2--3)^2}[/tex]
  3. [Radius] [√Radical] (Parenthesis) Simplify:                                                     [tex]\displaystyle r = \sqrt{(-1-2)^2+(-2+3)^2}[/tex]
  4. [Radius] [√Radical] (Parenthesis) Subtract/Add:                                           [tex]\displaystyle r = \sqrt{(-3)^2+(1)^2}[/tex]
  5. [Radius] [√Radical] Evaluate exponents:                                                       [tex]\displaystyle r = \sqrt{9+1}[/tex]
  6. [Radius] [√Radical] Add:                                                                                 [tex]\displaystyle r = \sqrt{10}[/tex]
ACCESS MORE