Answer:
9,10 or -10,-9
Step-by-step explanation:
Let call the first integer n and the second integer n+1 since they are consecutive.
Since the product of the integer is 90 set up this equation
[tex]n \times (n + 1)= 90[/tex]
[tex]n {}^{2} + n = 90[/tex]
Subtract 90 to get it on the left side
[tex] n {}^{2} + n - 90 [/tex]
Apply quadratic formula
[tex] - 1 + - \sqrt{ \frac{1 {}^{2} - 4(1)( - 90) }{2(1)} } [/tex]
[tex] - 1 + - \sqrt{ \frac{1 - ( - 360}{2} } [/tex]
[tex] - 1 + - \sqrt{ \frac{1 + 360 = 361}{2} } [/tex]
[tex] - 1 + - \frac{ \sqrt{361 = } 19}{2} [/tex]
The roots are n= -10 and 9. We can use either root but let use a positve root
We are taking the positve roots
Plug 9 as n into n+1
[tex]9 + 1 = 10[/tex]
or
[tex] - 10 + 1 = - 9[/tex]