Darius is putting tiles on the roof of his house. After working for 3 1/3 hours, he has completed 4/5 of the roof. Can Darius put the titles on the enitre roof in 4 hours if he continues to work at the same rate?

Respuesta :

Answer:

No.

Step-by-step explanation:

It is given that Darius is putting tiles on the roof of his house.

Darius had completed = [tex]$\frac{4}{5}$[/tex] th of the work

He takes time = [tex]$3 \frac{1}{3}$[/tex] hours to complete [tex]$\frac{4}{5}$[/tex] th of the work

The remaining work = [tex]$1 -\frac{4}{5}$[/tex]

                                 [tex]$=\frac{5-4}{5}$[/tex]

                                 [tex]$=\frac{1}{5}$[/tex]

∴  Darius completes [tex]$\frac{4}{5}$[/tex] th of the work in = [tex]$\frac{10}{3}$[/tex] hours

                           So, [tex]$\frac{1}{5}$[/tex] th of the work in = [tex]$\frac{10}{3} \times \frac{5}{4} \times \frac{1}{5}$[/tex] hours

                                                                 [tex]$=\frac{10}{12}$[/tex] hours

Therefore total time taken to complete the work [tex]$=\frac{10}{3}+\frac{10}{12}$[/tex] hours

                                                                                  [tex]$=\frac{40+10}{12}$[/tex] hours

                                                                                  [tex]$=\frac{50}{12}$[/tex] hours

                                                                                  [tex]$=4\frac{2}{12}$[/tex] hours

                                                                                  [tex]$=4\frac{1}{6}$[/tex] hours

Thus, Darius continues to work at the same rate will not be able to complete the work in 4 hours.  

                                                                                 

ACCESS MORE