Respuesta :

Answer:

[tex]\begin{pmatrix}-15&-28\\ -8&-15\end{pmatrix}[/tex]

Step-by-step explanation:

[tex]\begin{pmatrix}a\:&\:b\:\\ c\:&\:d\:\end{pmatrix}^{-1}=\frac{1}{\det \begin{pmatrix}a\:&\:b\:\\ c\:&\:d\:\end{pmatrix}}\begin{pmatrix}d\:&\:-b\:\\ -c\:&\:a\:\end{pmatrix}[/tex]

This is the formula we will use. Accordingly:

[tex]=>\frac{1}{\det \begin{pmatrix}-15&28\\ 8&-15\end{pmatrix}}\begin{pmatrix}-15&-28\\ -8&-15\end{pmatrix}[/tex]

det represents the determinant

if the determinant is 0 then only the inverse matrix will not exist. So let's find the determinant.

[tex]\det = \left(-15\right)\left(-15\right)-28\cdot \:8\\ = 1[/tex]

Now we multiply the following matrix by 1/1:

[tex]\frac{1}{1}\begin{pmatrix}-15&-28\\ -8&-15\end{pmatrix} = \begin{pmatrix}-15&-28\\ -8&-15\end{pmatrix}[/tex]

ACCESS MORE