Find the inverse of the matrix (if it exists). (If the answer does not exist, enter DNE in any cell of the matrix.)
![Find the inverse of the matrix if it exists If the answer does not exist enter DNE in any cell of the matrix class=](https://us-static.z-dn.net/files/d55/3dd5c436a8e85515120f5ff09b2167b7.png)
Answer:
[tex]\begin{pmatrix}-15&-28\\ -8&-15\end{pmatrix}[/tex]
Step-by-step explanation:
[tex]\begin{pmatrix}a\:&\:b\:\\ c\:&\:d\:\end{pmatrix}^{-1}=\frac{1}{\det \begin{pmatrix}a\:&\:b\:\\ c\:&\:d\:\end{pmatrix}}\begin{pmatrix}d\:&\:-b\:\\ -c\:&\:a\:\end{pmatrix}[/tex]
This is the formula we will use. Accordingly:
[tex]=>\frac{1}{\det \begin{pmatrix}-15&28\\ 8&-15\end{pmatrix}}\begin{pmatrix}-15&-28\\ -8&-15\end{pmatrix}[/tex]
det represents the determinant
if the determinant is 0 then only the inverse matrix will not exist. So let's find the determinant.
[tex]\det = \left(-15\right)\left(-15\right)-28\cdot \:8\\ = 1[/tex]
Now we multiply the following matrix by 1/1:
[tex]\frac{1}{1}\begin{pmatrix}-15&-28\\ -8&-15\end{pmatrix} = \begin{pmatrix}-15&-28\\ -8&-15\end{pmatrix}[/tex]